Proper Planning & Analysis Results in a Focused, Cost Effective Pipeline Rehab Project

Andrew Costa

Vice President of Sales, East Region
Aegion Corporation

WHAT TO EXPECT

Front End Planning & Early Stage Analysis

- Condition Assessment
- Design Considerations
- Trenchless Options

Project Overview

- Project Background
- Project Specifics
- Challenges

LOCATION – TOWN OF BROOKLINE

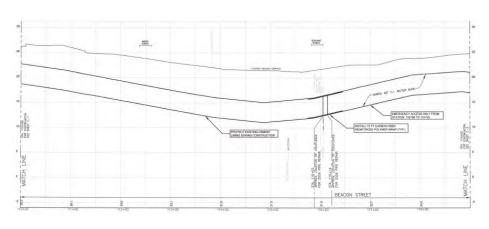
- Part of Greater Boston
- Population of ~60,000
- Close proximity to downtown Boston / Fenway Park
- MBTA Green Line Route
- Birthplace of JFK
- Very Affluent Community

PIPELINE ORIGINS

- Original line installed in 1870
- Cement mortar lined in 2000
- 2006 sinkhole under tracks from crack/leaks
- Similar issues in 2013
- Currently feeds 21,500,000
 GPD of potable water to the Boston Low Service System (13%)

LOCATION – MBTA GREEN LINE

- "C Branch"
- 300 Trips to/from Boston daily
- Serves more than 14,500 daily passengers
- Two parallel sets of tracks directly on vertical alignment of 48" pipeline



ENGINEERING CHALLENGES

Minimize Disruption

- Previous open cut projects severely impacted area
- Keep Greenline Open
- Constrained Access
 - Alignment under railway requires distant access points
- Horizontal & Vertical Alignment
 - Multiple elevation changes

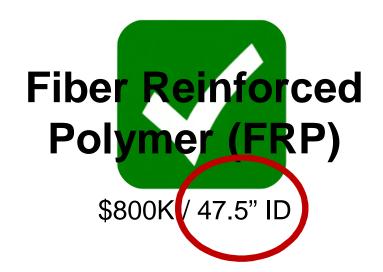
FEASIBILITY PLANNING

8 Different Rehabilitation Options:

- Cured-in-Place Pipe (CIPP)
- Fusible PVC® Sliplining
- Compressed Fit HDPE Sliplining
- Standard HDPE Sliplining
- High Strength HDPE Sliplining
- Steel Sliplining
- Segmental Steel Sliplining
- Carbon Fiber Reinforced Polymer (CFRP)
- Options Short-listed (4)

REHABILITATION OPTIONS - FEASIBILITY

Segmental Steel Sliplining


Fiber Reinforced Polymer (FRP)

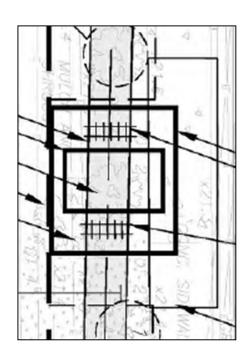
REHABILITATION OPTIONS - COST

High Strength
HDPE
Sliplining
\$2.4M / 34.3" ID

PROJECT OVERVIEW

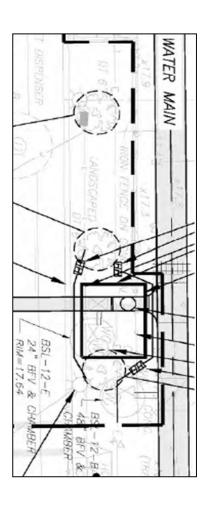
- Trenchless Rehab 72 LF of 48" Cast Iron Water Main (8' of DIP)
- Underneath Railway
- Heavy Traffic Area
- 90 psi Operating / 135 psi Transient Pressures
- Hand Applied CFRP / GFRP
 - Finished Thickness ~1/4"
- AWWA M28 Class IV Fully Structural

CONSTRUCTION OVERVIEW



72' Repair Scope

PROJECT OVERVIEW


Upstream
Access Point

PROJECT OVERVIEW

Downstream Access Point

WHY FIBERGLASS REINFORCED POLYMER?

Rapid Mobilization / Fast Material Procurement

- Amendable to emergency or quick-turnaround work
- Materials stocked and ready for immediate mobilization
- Crews onsite/working a few days after contract

WHY FIBERGLASS REINFORCED POLYMER?

General Access

- Small footprint
- Access point limitations
- Can utilize existing manways
- Installation is all manned entry

• Site Specific

- Limited staging area
- Two distant access points
 1,400 feet away
- Fast Installation
- Minimal impact to residents, business owners, public transportation, etc.

PROJECT CHALLENGES

- Distance Between Entry Points
 - Production Impact
 - Safety

- Small Footprint
 - Access vs. Install
- High Profile / Social Impact

DESIGN SUMMARY

Design Parameter	Input
Pipe Internal Diameter	48"
Pipe Type	Cast Iron / Ductile Iron
Design Standard	AWWA C305 Design Standard
Operating Pressure	90 psi
Traffic Loading	Two MBTA Green Line Trains at Fully Capacity (AW3)
Soil/Water Height	7 feet

Longitudinal

Notes on FRP Design:

- 1. Carbon FRP layers utilized for strength
- 2. Glass FRP layers utilized as dielectric and watertightness barriers (non-structural)
- 3. Customized for pipe diameter

Hoop

FRP PROCESS – APPLICATION

- 1. GFRP for steel
- 2. Hoop CFRP
- 3. Long CFRP
- 4. GFRP for watertightness
- 5. Hoop CFRP

Nominal Thickness of 0.26"

~1/2" Cross-sectional ID Loss

FINAL PROJECT SUMMARY

- 72 LF of FRP Rehabilitation
- 2 Access Points
 - ~3,000 LF apart
- Small Install Footprint
- Massive savings:
 - Disruption
 - Time
 - \$\$ Cost / Social Cost
- AWWA Class IV Fully Structural Remediation
 - ~1/2" Cross-sectional ID Loss

ANALYSIS SUMMARY

Front End Analysis and Evaluation Resulted In:

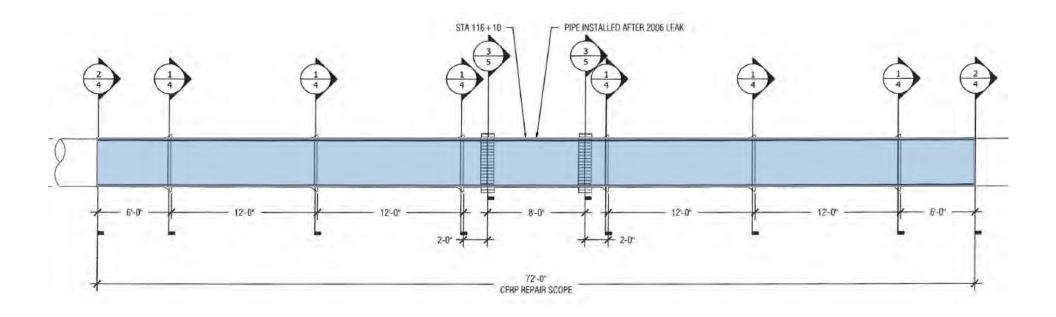
- Minimized Access Points / Impact
 - ~3,000 LF apart
- Identified Need & Vehicle for Localized Repair vs. Total Length Repair
 - 72 LF of FRP Rehab vs. 3,000 LF
- Maximized Flow
 - Approx ½" ID loss vs. 8"-15" ID loss
- Costs Savings
 - \$800k vs. ~\$2.5m

THANK YOU!

Contact: Andrew Costa

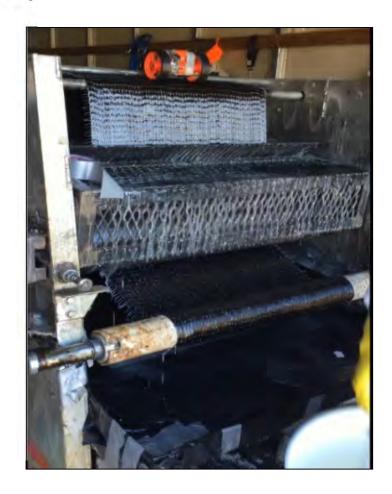
acosta@aegion.com (813) 309-0385

www.fibrwrap.com www.aegion.com



SUPPLEMENTAL SLIDES

FRP DESIGN


48" Dia. Steel Pipe

FRP Design:

- Glass FRP: 2 layers to act as a dielectric & watertightness barrier
- Hoop Layers: 2 layers of Carbon FRP System
- Longitudinal Layers: 1 layer of Carbon FRP System

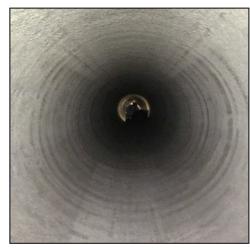
FRP INSTALLATION OVERVIEW

- ACCESS (MANWAY OR EXCAVATION)
- BYPASS / FLOW DIVERSION
 - HOT TAP / LINE STOP
- CLEANING / SURFACE PREP
- INSTALLATION
 - SATURATION / HAND LAYUP
- QA/QC TESTING
- RESTORATION
 - (IF NEEDED)

FRP PROCESS – SURFACE PREP

Ventilation Plan

High Pressure Water or Sand Blast


Media capture

Steel: SSPC SP-10 profile (Near white metal)

QA/QC TESTING

 Minimum (3) 2 ft. x 2 ft. panels on adjacent non-repair pipes

 Prepared and tested by Installer (ASTM D4541)

 >200 psi required for at least 3 tests per panel

Witnessed by Inspector

