Fold & Form PVC Liners Sewer & Culvert Rehabilitation

Presented at NASTT Conference Cooperstown, NY November 16, 2017

Scott Mills, P. Eng. Eastern District Manager - Municipal Systems IPEX USA, LLC

Agenda

- Overview of existing rehab technologies
- Fold and Form PVC Liners
 - Manufacturing
 - Installation
 - Case Studies
 - Performance Standards
 - Structural Design
 - QC & Certifications
 - Benefits / Summary

Deteriorated Sewer Infrastructure

- **D-** is the grade ASCE gave US Wastewater infrastructure
- 10 Billion gallons of raw sewage discharge through SSO's annually¹
- Main Cause broken/cracked or blocked pipes and joints

¹ Source:Local Government Expenditures on Sewer and Water (1991-2005), 2007, http://www.usmayors.org/urbanwater/07expenditures.pdf.

Culvert Hazards

- Culverts in poor condition can lead to dangerous sinkholes
- Corrugated Steel Pipe (CSP) allows infiltration of water and soil

Trenchless Pipeline Rehabilitation

Trenchless rehab is typically far less expensive than the dig-up and replace option, and far less disruptive to the public.

- Fold & Form Pipe (FFP)
- Spot Repairs
 - Grouting / Root control
- Pipe Bursting
- Sliplining
 - ➤ HDPE
 - Fusible PVCtm
- Cured in Place (CIPP)
 - Steam/Hot WaterUV
- Geopolymer Spray-On

Fold & Form Pipe (FFP) Overview

- PVC or PE thermoplastic liners
- Extruded pipe is folded into a U or H profile while still warm
- Coiled onto large reels and cooled to ambient temperature
- Reheated on-site until pliable
- Pulled into the host pipe
- Ends are plugged and it is filled with steam and air to expand and reform the circular pipe
- Snug fitting liner pipe cools and hardens

FFP Install Set-Up

Small Footprint:

- Sewer MH to MH occupies single traffic lane
- Culvert typically no lane closures

FFP - Manufacturing

PVC pipe is extruded

While still warm, the pipe is folded into a U or H profile shape

While still warm, the pipe is folded into a U or H profile shape

The warm, folded pipe is coiled onto large reels & cools to ambient

FFP – Installation

Host Pipe Prep

- Bypass control if needed
- Roots cut out
- Offset joints fixed
- Groundwater infiltration points grouted (heat sink)
- Debris removed
- Large voids under pipe inverts should be filled (gravel, grout, cement)

Reel of coiled FFP is steam heated until pliable

Reel of coiled FFP is steam heated until pliable (inner and outer surfaces)

A cable is sent down a manhole, through the host pipe and up a different manhole, where it is connected to a pull head fashioned on the FFP

A winch and rollers/pulleys pull the pliable FFP through sewer/culvert

A winch and rollers/pulleys pull the pliable FFP through sewer/culvert

- Both ends are plugged
- Pressurized steam expands it in place
- Pipe is cooled and hardens

FFP is trimmed at Manholes and laterals are cut out robotically

FFP - Case Studies

FFP – Case Study 1A (Leamington)

- 18" CSP Culvert, 75' pull 18" Liner Used
- Liner expansion: 13%, Finished DR66

FFP – Case Study 1B (Leamington)

15" CSP Culvert, 70' pull **12" Liner Used**

Liner expansion: <u>36%</u>, Finished DR66

FFP – Case Study 2

Liner expansion: 10%, Finished DR35

FFP – Case Study 2

- Host Pipe
 - 8" RCP Sanitary sewer
 - 300' MH to MH, passed through MH at 200'
 - 8' Depth of Bury
- FFP Pipe
 - 8" DR 27.5, 350' long
- Ambient Temperature
 - 26 to 35°F

FFP – Case Study 3 (Tillsonburg)

16" CSP Culvert, 60' MH to road side Liner expansion: 14%, Finished DR47

FFP – Case Study 4 (Tecumseh)

15" CSP Storm, 108' CB to CB Liner expansion: 11%, Finished DR41

FFP – Case Study 5 (Mississauga)

36" CSP Culvert, 220' pullLiner expansion: 24%, Finished DR68<u>30" Liner Used</u>

FFP – Case Study 6 (Lambton)

- 24" CSP Culvert, 140' CB to CB
- Liner expansion: 13%, Finished DR66

FFP – Standards

FFP – Two Material Choices

	<u>ASTM F1504</u>	<u>ASTM F1871</u>		
Flexural Strength	9,000 psi	6,100 psi		
Modulus (E)	400,000 psi	230,000psi		
Heat Deflection Temp	140 °F	115°F		
Re-heating Method	Steam in & out	Steam out		
Size Range	4" to 15"	4" to 18"		

- Higher stiffness permits deeper burial
- Lower stiffness is easier to negotiate bends in the host pipe
- NovaForm available in up to 30" (ASTM F1504)

Structural Design

- Design theory is that of a "Close Fit Liner"
 - Use ASTM F1947 Appendix X1 for F1504 liner
 - Use ASTM F1867 Appendix X1 for F1871 liner
 - Same design methods currently used for CIPP liners:
 ASTM F1216 Appendix X1 (-07a, -07b or -09)
- Calculate:
 - Buckling Pressure using loading on the pipe
 - Deflection, Ring Bending, Minimum Stiffness

Structural Design

- Design parameters:
 - Liner dimensions and physical properties
 - Existing (host) pipe characteristics:
 - Fully or Partially Deteriorated Pipe
 - Ovality
 - Soil characteristics: Density and Modulus
 - Loading conditions:
 - Soil depth to pipe crown
 - Groundwater depth to pipe crown
 - Live Loading (HS-20, R.R.)

Structural Design – Liner Comparison

The material properties used for the 4 liner types in Tables 1-4 are:

Liner Type	Flexural Modulus Short-term	Flexural Strength Short-term	Long-term Retention (5 year)			
CIPP 2,420 MPa Regular 350,000 psi CIPP 8,000 MPa Reinforced 1,150,300 psi		31 MPa 4,500 psi	50%			
		150 MPa 21,7580 psi	65%			
PVC F/F ASTM 1871	1,586 MPa 230,000 psi	42.1 MPa 6,100 psi	50%			
PVC F/F 2758 MPa ASTM 1504 400,000 psi		62.1 MPa 9,000 psi	50%			

Structural Design – Existing Pipe

Existing Pipe Parameters

Design Condition	Fully Deteriorated
Inside Diameter	As stated in the form of tender
Depth to invert	4m*
Water table below surface	1m
Ovality	3%**
Soil Density	1925 kg/m3 (unless otherwise known)
Soil Modulus	4.8 MPa (unless otherwise known)
Live Load	H20 of 110MPa

* Sewer greater than 4m in-depth will have site specific designs. (SSD)

** Sewer greater than 3% ovality will have site specific designs. (SSD)

Structural Design - Comparison

Wall Thickness and corresponding DR of FFP required for given conditions

Existing Pipe Condition	Pipe Size	Invert Depth	CIPP Regular		CIPP Reinforced		PVC F/F ASTM 1871		PVC F/F ASTM 1504	
Fully Deteriorated	300 mm	2.0 m	4.9 mm	DR 61	3.0 mm	DR 100	5.6 mm	DR 54	4.7 mm	DR 64
Fully Deteriorated	600 mm	2.5 m	10.0 mm	DR 60	6.2 mm	DR 97	11.5 mm	DR 52	9.6 mm	DR 63
Fully Deteriorated	900 mm	3.0 m	15.5 mm	DR 58	9.6 mm	DR 94	17.9 mm	DR 50	14.9 mm	DR 60
Fully Deteriorated	1200 mm	4.0 m	23.0 mm	DR 52	14.2 mm	DR 85	26.5 mm	DR 45	22.0 mm	DR 55
Partially Deteriorated	300 mm	2.0 m	4.2 mm	DR 71	3.0 mm	DR 100	148mh	DR 63	Alerte	DR 75
Partially Deteriorated	600 mm	2.5 m	9.0 mm	DR 67	6.0 mm	DR 100	10.3 mm	DR 58	8.6 mm	DR 70
Partially Deteriorated	900 mm	3.0 m	14.3 mm	DR 63	9.0 mm	DR 100	16.4 mm	DR 55	13.7 mm	DR 66
Partially Deteriorated	1200 mm	4.0 m	20.9 mm	DR 57	12.9 mm	DR 93	24.0 mm	DR 50	20.0 mm	DR 60

TABLE 1: Water Table: 0 m below ground surface; Ovality 3%

Structural Design - Comparison

Wall Thickness and corresponding DR of FFP required for given conditions

Existing Pipe Condition	Pipe Size	Invert Depth	CIPP Regular		CIPP Reinforced		5	PVC F	F/F 1871	PVC 150	F/F 4
Fully Deteriorated	300 mm 2.0	2.0 m	4.5 mm	DR 67	3.0 mm	DR	00	5.1 mm	DR 59	4.3 mm	DR 70
Fully Deteriorated	600 mm	2.5 m	8.9 mm	DR 67	6.0 mm	DR	100	10.2 mm	DR 59	8.5 mm	DR 71
Fully Deteriorated	900 mm	3.0 m	13.3 mm	DR 68	9.0 mm	DR	100	15.3 mm	DR 59	12.7 mm	DR 71
Fully Deteriorated	1200 mm	4.0 m	19.2 mm	DR 63	12.0 mm	DR	00	22.1 mm	DR 54	18.4 mm	DR 65
Partially Deteriorated	300 mm	2.0 m	3.0 mm E	DR 100	3.0 mm	DR	90	Alerter	DRADO	Jahm	OPLO
Partially Deteriorated	600 mm	2.5 m	6.0 mm D	DR 100	6.0 mm	DR	100	6.7 mm	DR 90	6.0 mm	DR 100
Partially Deteriorated	900 mm	3.0 m	9.9 mm	DR 91	9.0 mm	DR	100	11.4 mm	DR 79	9.5 mm	DR 95
Partially Deteriorated	1200 mm	4.0 m	14.5 mm	DR 83	12.0 mm	DR	100	16.7 mm	DR 72	13.9 mm	DR 86

QC Testing

- Each Coil
 - QC tests include acetone immersion, heat reversion tests, and dimensional checks
- Every Production Run
 - Impact, Stiffness, Flattening, Flexural Modulus
 - Sample lengths are taken and expanded to mimic in-field expansion; min. 1 per production run

Standard Specification for Folded/Formed Poly (Vinyl Chloride) Pipe Type A for Existing Sewer and Condult Rehabilitation¹

Certifications

NovaForm in sizes 6'' - 15'' is 3^{rd} party certified by the CSA organization to comply with ASTM F1504.

Standards Worldwide

FFP – Benefits / Summary

- Odor free installation Steam / Heat
- Styrene / Chemical free installation
- Small installation footprint
- Fast installation
- Factory manufactured:
 - QA/QC in controlled environment
 - ➤ 3rd party certified
 - > Material properties available **BEFORE** installation
- Finished product like "stick pipe" (SDR 35)
- Improved hydraulics: *Mannings = 0.009*
- Chemical resistant & corrosion-proof
- 50+ year service life
- Over 20M ft installed world-wide

Thank you!

NOVAFORM PVC LINER

www.ipexna.com

E-mail: Mobile: scott.mills@ipexamerica.com 519-719-6396